Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.782
1.
Eur J Med Chem ; 271: 116453, 2024 May 05.
Article En | MEDLINE | ID: mdl-38701713

Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.


Ferroptosis , Hypoxia-Ischemia, Brain , Ferroptosis/drug effects , Humans , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Animals , Infant, Newborn , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemical synthesis
2.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715091

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
3.
JAMA Netw Open ; 7(5): e249119, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709535

Importance: Although whole-body hypothermia is widely used after mild neonatal hypoxic-ischemic encephalopathy (HIE), safety and efficacy have not been evaluated in randomized clinical trials (RCTs), to our knowledge. Objective: To examine the effect of 48 and 72 hours of whole-body hypothermia after mild HIE on cerebral magnetic resonance (MR) biomarkers. Design, Setting, and Participants: This open-label, 3-arm RCT was conducted between October 31, 2019, and April 28, 2023, with masked outcome analysis. Participants were neonates at 6 tertiary neonatal intensive care units in the UK and Italy born at or after 36 weeks' gestation with severe birth acidosis, requiring continued resuscitation, or with an Apgar score less than 6 at 10 minutes after birth and with evidence of mild HIE on modified Sarnat staging. Statistical analysis was per intention to treat. Interventions: Random allocation to 1 of 3 groups (1:1:1) based on age: neonates younger than 6 hours were randomized to normothermia or 72-hour hypothermia (33.5 °C), and those 6 hours or older and already receiving whole-body hypothermia were randomized to rewarming after 48 or 72 hours of hypothermia. Main Outcomes and Measures: Thalamic N-acetyl aspartate (NAA) concentration (mmol/kg wet weight), assessed by cerebral MR imaging and thalamic spectroscopy between 4 and 7 days after birth using harmonized sequences. Results: Of 225 eligible neonates, 101 were recruited (54 males [53.5%]); 48 (47.5%) were younger than 6 hours and 53 (52.5%) were 6 hours or older at randomization. Mean (SD) gestational age and birth weight were 39.5 (1.1) weeks and 3378 (380) grams in the normothermia group (n = 34), 38.7 (0.5) weeks and 3017 (338) grams in the 48-hour hypothermia group (n = 31), and 39.0 (1.1) weeks and 3293 (252) grams in the 72-hour hypothermia group (n = 36). More neonates in the 48-hour (14 of 31 [45.2%]) and 72-hour (13 of 36 [36.1%]) groups required intubation at birth than in the normothermic group (3 of 34 [8.8%]). Ninety-nine neonates (98.0%) had MR imaging data and 87 (86.1%), NAA data. Injury scores on conventional MR biomarkers were similar across groups. The mean (SD) NAA level in the normothermia group was 10.98 (0.92) mmol/kg wet weight vs 8.36 (1.23) mmol/kg wet weight (mean difference [MD], -2.62 [95% CI, -3.34 to -1.89] mmol/kg wet weight) in the 48-hour and 9.02 (1.79) mmol/kg wet weight (MD, -1.96 [95% CI, -2.66 to -1.26] mmol/kg wet weight) in the 72-hour hypothermia group. Seizures occurred beyond 6 hours after birth in 4 neonates: 1 (2.9%) in the normothermia group, 1 (3.2%) in the 48-hour hypothermia group, and 2 (5.6%) in the 72-hour hypothermia group. Conclusions and Relevance: In this pilot RCT, whole-body hypothermia did not improve cerebral MR biomarkers after mild HIE, although neonates in the hypothermia groups were sicker at baseline. Safety and efficacy of whole-body hypothermia should be evaluated in RCTs. Trial Registration: ClinicalTrials.gov Identifier: NCT03409770.


Hypothermia, Induced , Hypoxia-Ischemia, Brain , Humans , Hypothermia, Induced/methods , Infant, Newborn , Hypoxia-Ischemia, Brain/therapy , Female , Pilot Projects , Male , Magnetic Resonance Imaging/methods , Italy , United Kingdom , Treatment Outcome
4.
Reprod Toxicol ; 1232024 Jan.
Article En | MEDLINE | ID: mdl-38706688

Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.


Animals, Newborn , Autophagy , Brain , Diabetes, Gestational , Hypoxia-Ischemia, Brain , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Streptozocin , TOR Serine-Threonine Kinases , Animals , Female , Pregnancy , Hypoxia-Ischemia, Brain/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Diabetes, Gestational/chemically induced , Diabetes, Gestational/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Male , PTEN Phosphohydrolase/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Prenatal Exposure Delayed Effects , Blood Glucose , Rats
5.
Med Sci Monit ; 30: e943802, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741355

BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.


Cerebral Cortex , Coma , Consciousness , Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Thalamus , Humans , Female , Male , Middle Aged , Thalamus/physiopathology , Thalamus/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/diagnostic imaging , Adult , Consciousness/physiology , Diffusion Tensor Imaging/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Retrospective Studies , Coma/physiopathology , Coma/diagnostic imaging , Magnetic Resonance Imaging/methods , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Consciousness Disorders/physiopathology , Consciousness Disorders/diagnostic imaging , Aged
6.
Semin Perinatol ; 48(3): 151904, 2024 Apr.
Article En | MEDLINE | ID: mdl-38688744

Despite significant improvement in perinatal care and research, hypoxic ischemic encephalopathy (HIE) remains a global healthcare challenge. From both published research and reports of QI initiatives, we have identified a number of distinct opportunities that can serve as targets of quality improvement (QI) initiatives focused on reducing HIE. Specifically, (i) implementation of perinatal interventions to anticipate and timely manage high-risk deliveries; (ii) enhancement of team training and communication; (iii) optimization of early HIE diagnosis and management in referring centers and during transport; (iv) standardization of the approach when managing neonates with HIE during therapeutic hypothermia; (v) and establishment of protocols for family integration and follow-up, have been identified as important in successful QI initiatives. We also provide a framework and examples of tools that can be used to support QI work and discuss some of the perceived challenges and future opportunities for QI targeting HIE.


Hypothermia, Induced , Hypoxia-Ischemia, Brain , Quality Improvement , Humans , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn , Pregnancy , Female , Hypothermia, Induced/methods , Perinatal Care/standards , Perinatal Care/methods , Patient Care Team , Obstetrics/standards
7.
Cells ; 13(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667275

Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.


Animals, Newborn , Blood-Brain Barrier , Hypoxia-Ischemia, Brain , Microglia , Animals , Microglia/pathology , Microglia/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Male , Female
9.
J Mother Child ; 28(1): 33-44, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38639099

INTRODUCTION: Perinatal asphyxia, a leading cause of neonatal mortality and neurological sequelae, necessitates early detection of pathophysiological neurologic changes during hypoxic-ischaemic encephalopathy (HIE). This study aimed to review published data on rScO2 monitoring during hypothermia treatment in neonates with perinatal asphyxia to predict short- and long-term neurological injury. METHODS: A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Study identification was performed through a search between November and December 2021 in the electronic databases PubMed, Embase, Lilacs, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL). The main outcome was short-term (Changes in brain magnetic resonating imaging) and long-term (In neurodevelopment) neurological injury. The study protocol was registered in PROSPERO (International Prospective Register of Systematic Reviews) with CRD42023395438. RESULTS: 380 articles were collected from databases in the initial search. Finally, 15 articles were selected for extraction and analysis of the information. An increase in rScO2 measured by NIRS (Near-infrared spectroscopy) at different moments of treatment predicts neurological injury. However, there exists a wide variability in the methods and outcomes of the studies. CONCLUSION: High rScO2 values were found to predict negative outcomes, with substantial discord among studies. NIRS is proposed as a real-time bedside tool for predicting brain injury in neonates with moderate to severe HIE.


Asphyxia Neonatorum , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Spectroscopy, Near-Infrared , Asphyxia/complications , Asphyxia/therapy , Brain/diagnostic imaging , Hypothermia, Induced/adverse effects , Hypothermia, Induced/methods , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/diagnosis
10.
Eur J Pharmacol ; 971: 176539, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565342

Hypoxic-ischemic brain damage (HIBD) is a cerebral injury resulting from the combination of ischemia and hypoxia in neonatal brain tissue. Presently, there exists no efficacious remedy for HIBD. A mounting body of evidence indicates that dynamic metabolites formed during metabolic procedures assume a vital role in neuronal maturation and recuperation. However, it remains unclear whether any endogenous metabolites are involved in the pathogenesis of HIBD. Here, an untargeted metabolomics analysis was conducted by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry (GC/LC-MS) in OGD/R (oxygen-glucose deprivation/reoxygenation)-induced HT-22 cells. We observed that ferroptosis signaling plays an essential role in HI-induced neuronal injury. Interestingly, we also found that the differentially expressed metabolite, 2-phosphoglyceric acid, significantly improved the neuronal cell survival of OGD/R HT-22 cells by inhibiting ferroptosis. Moreover, 2-phosphoglyceric acid effectively rescued the cell activity of HT-22 cells treated with the ferroptosis inducer RSL-3. Furthermore, 2-phosphoglyceric acid alleviated cerebral infarction and reduced HIBD-induced neuronal cell loss of the central nervous system in neonatal rats by regulating GPX4 expression. Taken together, we found that 2-phosphoglyceric acid, which was downregulated in HT-22 cells induced by OGD/R, exerted neuronal protective effects on OGD/R-treated HT-22 cells and HIBD-induced neonatal rats by inhibiting hypoxic-ischemic-induced ferroptosis through the regulation of the GPX4/ACSL4 axis.


Hypoxia-Ischemia, Brain , Rats , Animals , Animals, Newborn , Rats, Sprague-Dawley , Hypoxia-Ischemia, Brain/metabolism , Hypoxia/metabolism , Brain/metabolism
11.
Front Biosci (Landmark Ed) ; 29(4): 139, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38682178

BACKGROUND: Hypoxic-ischaemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although hypothermia therapy offers some neuroprotection, the recovery of neurological function is limited. Therefore, new synergistic therapies are necessary to improve the prognosis. Mesenchymal stem cell-based therapy is emerging as a promising treatment option for HIE. In this study, we studied the therapeutic efficacy of human placenta-derived mesenchymal stem cells (PD-MSCs) in the HIE rat model and analyzed the underlying therapeutic mechanisms. METHODS: Rats were divided into 6 groups (n = 9 for each) as follows: control, HIE model, HIE + normal saline, and HIE + PD-MSC transplantation at days 7, 14 and 28 postpartum. Following PD-MSC transplantation, neurological behavior was evaluated using rotarod tests, traction tests, and the Morris water maze test. The degree of brain tissue damage was assessed by histological examination and Nissl staining. Expression levels of apoptosis-related proteins and inflammatory factors were quantified by Western blotting and enzyme-linked immunosorbent assays. Immunofluorescence was used to investigate the ability of PD-MSCs to repair the morphology and function of hippocampal neurons with hypoxic-ischaemic (HI) injury. RESULTS: PD-MSC transplantation enhanced motor coordination and muscle strength in HIE rats. This treatment also improved spatial memory ability by repairing pathological damage and preventing the loss of neurons in the cerebral cortex. The most effective treatment was observed in the HIE + PD-MSC transplantation at day 7 group. Expression levels of microtubule-associated protein-2 (MAP-2), B-cell lymphoma-2 (BCL-2), interleukin (IL)-10, and transforming growth factor (TGF -ß1) were significantly higher in the HIE + PD-MSC treatment groups compared to the HIE group, whereas the levels of BCL-2-associated X protein (BAX), BCL-2-associated agonist of cell death (BAD), IL-1ß and tumour necrosis factor α (TNF-α) were significantly lower. CONCLUSIONS: We demonstrated that intravenous injection of PD-MSC at 7, 14 and 28 days after intrauterine HI damage in a rat model could improve learning, memory, and motor function, possibly by inhibiting apoptosis and inflammatory damage. These findings indicate that autologous PD-MSC therapy could have potential application for the treatment of HIE.


Apoptosis , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Placenta , Rats, Sprague-Dawley , Animals , Female , Mesenchymal Stem Cell Transplantation/methods , Pregnancy , Hypoxia-Ischemia, Brain/therapy , Humans , Placenta/cytology , Mesenchymal Stem Cells/cytology , Rats , Disease Models, Animal , Hippocampus/metabolism , Inflammation/therapy , Neurons/metabolism , Male
12.
An Pediatr (Engl Ed) ; 100(4): 275-286, 2024 Apr.
Article En | MEDLINE | ID: mdl-38614864

It is estimated that 96% of infants with hypoxic-ischaemic encephalopathy (HIE) are born in resource-limited settings with no capacity to provide the standard of care that has been established for nearly 15 years in high-resource countries, which includes therapeutic hypothermia (TH), continuous electroencephalographic monitoring and magnetic resonance imaging (MRI) in addition to close vital signs and haemodynamic monitoring. This situation does not seem to be changing; however, even with these limitations, currently available knowledge can help improve the care of HIE patients in resource-limited settings. The purpose of this systematic review was to provide, under the term "HIE Code", evidence-based recommendations for feasible care practices to optimise the care of infants with HIE and potentially help reduce the risks associated with comorbidity and improve neurodevelopmental outcomes. The content of the HIE code was grouped under 9 headings: (1) prevention of HIE, (2) resuscitation, (3) first 6h post birth, (4) identification and grading of encephalopathy, (5) seizure management, (6) other therapeutic interventions, (7) multiple organ dysfunction, (8) diagnostic tests and (9) family care.


Developing Countries , Hypoxia-Ischemia, Brain , Humans , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/diagnosis , Infant, Newborn , Hypothermia, Induced/methods , Health Resources , Electroencephalography , Resource-Limited Settings
13.
J Neurosci Res ; 102(4): e25329, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597144

There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.


Brain Injuries , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Infant, Newborn , Infant , Humans , Animals, Newborn , Ribonucleases/metabolism , Ribonucleases/pharmacology , Brain Injuries/drug therapy , Brain/metabolism , Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Disease Models, Animal
14.
Ital J Pediatr ; 50(1): 66, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594715

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) appears in neurological conditions where some brain areas are likely to be injured, such as deep grey matter, basal ganglia area, and white matter subcortical periventricular áreas. Moreover, modeling these brain areas in a newborn is challenging due to significant variability in the intensities associated with HIE conditions. This paper aims to evaluate functional measurements and 3D machine learning models of a given HIE case by correlating the affected brain areas with the pathophysiology and clinical neurodevelopmental. CASE PRESENTATION: A comprehensive analysis of a term infant with perinatal asphyxia using longitudinal 3D brain information from Machine Learning Models is presented. The clinical analysis revealed the perinatal asphyxia diagnosis with APGAR <5 at 5 and 10 minutes, umbilical arterial pH of 7.0 BE of -21.2 mmol / L), neonatal seizures, and invasive ventilation mechanics. Therapeutic interventions: physical, occupational, and language neurodevelopmental therapies. Epilepsy treatment: vagus nerve stimulation, levetiracetam, and phenobarbital. Furthermore, the 3D analysis showed how the volume decreases due to age, exhibiting an increasing asymmetry between hemispheres. The results of the basal ganglia area showed that thalamus asymmetry, caudate, and putamen increase over time while globus pallidus decreases. CLINICAL OUTCOMES: spastic cerebral palsy, microcephaly, treatment-refractory epilepsy. CONCLUSIONS: Slight changes in the basal ganglia and cerebellum require 3D volumetry for detection, as standard MRI examinations cannot fully reveal their complex shape variations. Quantifying these subtle neurodevelopmental changes helps in understanding their clinical implications. Besides, neurophysiological evaluations can boost neuroplasticity in children with neurological sequelae by stimulating new neuronal connections.


Asphyxia Neonatorum , Epilepsy , Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Pregnancy , Female , Child , Humans , Asphyxia/complications , Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/complications , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/diagnostic imaging , Asphyxia Neonatorum/therapy , Seizures/complications
15.
Article En | MEDLINE | ID: mdl-38575384

Respiratory distress syndrome (RDS) and hypoxic-ischemic encephalopathy (HIE) are frequent causes of death and disability in neonates. This study included newborns between January 2021 and July 2022 at the University Clinic for Gynecology and Obstetrics, Skopje. Up to date criteria for HIE/RDS for term and for preterm infants as well for the severity of HIE/RDS were used in a comprehensive analysis of cranial ultrasonography, neurological status, neonatal infections, Apgar score, bradycardia and hypotension, X-ray of the lungs, FiO2, acid-base status, assisted ventilation and use of surfactant. Three groups were created: HIE with RDS (42 babies), HIE without RDS (30 babies) and RDS without HIE in 38 neonates. All newborns with severe (third) degree of HIE died. Intracranial bleeding was found in 35.7% in the first group and 30% in the second group, and in the third group in 53.3%. The need for surfactant in the HIE group with RDS is 59.5%, and in the RDS group without HIE 84.2%. DIC associated with sepsis was found in 13.1-50% in those groups. In newborns with HIE and bradycardia, the probability of having RDS was on average 3.2 times higher than in those without bradycardia. The application of the surfactant significantly improved the pH, pO2, pCO2, BE and chest X-ray in children with RDS. An Apgar score less than 6 at the fifth minute increases the risk of RDS by 3 times. The metabolic acidosis in the first 24 hours increases the risk of death by 23.6 times. The combination of HIE/ RDS significantly worsens the disease outcome. The use of scoring systems improved the early detection of high risk babies and initiation of early treatment increased the chances for survival without disabilities.


Hypoxia-Ischemia, Brain , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Infant , Pregnancy , Female , Child , Infant, Newborn , Humans , Infant, Premature , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Bradycardia , Respiratory Distress Syndrome, Newborn/epidemiology , Respiratory Distress Syndrome, Newborn/therapy , Pulmonary Surfactants/therapeutic use , Surface-Active Agents
16.
Sci Rep ; 14(1): 7924, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575644

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Dehydrocholesterols , Ferroptosis , Hypoxia-Ischemia, Brain , Animals , Mice , Animals, Newborn , Brain , Hypoxia/complications , Oxygen/therapeutic use , Ischemia/complications , Iron/therapeutic use
17.
Early Hum Dev ; 192: 105992, 2024 May.
Article En | MEDLINE | ID: mdl-38574696

BACKGROUND: Many infants who survive hypoxic-ischemic encephalopathy (HIE) face long-term complications like epilepsy, cerebral palsy, and developmental delays. Detecting and forecasting developmental issues in high-risk infants is critical. AIM: This study aims to assess the effectiveness of standardized General Movements Assessment (GMA) and Hammersmith Infant Neurological Examinations (HINE) in identifying nervous system damage and predicting neurological outcomes in infants with HIE. DESIGN: Prospective. SUBJECTS AND MEASURES: We examined full-term newborns with perinatal asphyxia, classifying them as Grade 2 HIE according to Sarnat and Sarnat. The study included 31 infants, with 14 (45.2 %) receiving therapeutic hypothermia (Group 1) and 17 (54.8 %) not (Group 2). We evaluated general movements during writhing and fidgety phases and conducted neurological assessments using the HINE. RESULTS: All infants exhibited cramped-synchronized - like movements, leading to cerebral palsy (CP) diagnosis. Three children in Group 1 and four in Group 2 lacked fidgety movements. During active movements, HINE and GMA showed high sensitivity and specificity, reaching 96 % and 100 % for all children. The ROC curve's area under the curve (AUC) was 0.978. CONCLUSION: Our study affirms HINE and GMA as effective tools for predicting CP in HIE-affected children. GMA exhibits higher sensitivity and specificity during fidgety movements. However, study limitations include a small sample size and data from a single medical institution, necessitating further research.


Cerebral Palsy , Hypoxia-Ischemia, Brain , Humans , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/diagnosis , Male , Female , Infant, Newborn , Cerebral Palsy/diagnosis , Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Neurologic Examination/methods , Neurologic Examination/standards , Movement , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/diagnosis , Infant , Prospective Studies
18.
J Neurophysiol ; 131(5): 865-871, 2024 May 01.
Article En | MEDLINE | ID: mdl-38568478

Motor disturbances predominantly characterize hypoxic-ischemic encephalopathy (HIE). Among its intervention methods, environmental enrichment (EE) is strictly considered a form of sensory intervention. However, limited research uses EE as a single sensory input intervention to validate outcomes postintervention. A Sprague-Dawley rat model subjected to left common carotid artery ligation and exposure to oxygen-hypoxic conditions is used in this study. EE was achieved by enhancing the recreational and stress-relief items within the cage, increasing the duration of sunlight, colorful items exposure, and introducing background music. JZL184 (JZL) was administered as neuroprotective drugs. EE was performed 21 days postoperatively and the rats were randomly assigned to the standard environment and EE groups, the two groups were redivided into control, JZL, and vehicle injection subgroups. The Western blotting and behavior test indicated that EE and JZL injections were efficacious in promoting cognitive function in rats following HIE. In addition, the motor function performance in the EE-alone intervention group and the JZL-alone group after HIE was significantly improved compared with the control group. The combined EE and JZL intervention group exhibited even more pronounced improvements in these performances. EE may enhance motor function through sensory input different from the direct neuroprotective effect of pharmacological treatment.NEW & NOTEWORTHY Rarely does literature assess motor function, even though it is common after hypoxia ischemic encephalopathy (HIE). Previously used environmental enrichment (EE) components have not been solely used as sensory inputs. Physical factors were minimized in our study to observe the effects of purely sensory inputs.


Hypoxia-Ischemia, Brain , Rats, Sprague-Dawley , Animals , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/physiopathology , Rats , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Environment , Recovery of Function/physiology , Motor Activity/physiology
19.
Neurotherapeutics ; 21(3): e00341, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453562

Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 â€‹mg/kg) or placebo (PL) were given 15 â€‹min, 24 and 48 â€‹h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 â€‹min with (30 â€‹°C) and without (36 â€‹°C) exposure to hypothermia 1.5 â€‹h after HI for 3 â€‹h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P â€‹< â€‹0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P â€‹< â€‹0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P â€‹< â€‹0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P â€‹= â€‹0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P â€‹< â€‹0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.


Alpha-Globulins , Animals, Newborn , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypothermia, Induced/methods , Male , Rats , Female , Alpha-Globulins/metabolism , Humans
20.
BMC Pediatr ; 24(1): 178, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481189

BACKGROUND: Amniotic fluid contamination (AFC) is a risk factor for neonatal hypoxic ischemic encephalopathy (HIE); however, the correlation between AFC level and the incidence and clinical grading of HIE, in addition to relevant biomarkers of brain damage, have not been assessed. METHODS: This single-center observational study included 75 neonates with moderate-to-severe HIE. The neonates with HIE were divided into four subgroups according to the AFC level: normal amniotic fluid with HIE group (NAF-HIE), I°AFC with HIE group (I°AFC-HIE), II°AFC with HIE group (II°AFC-HIE), and III°AFC with HIE group (III°AFC-HIE). The control groups consisted of 35 healthy neonates. The clinical grading of neonatal HIE was performed according to the criteria of Sarnat and Sarnat. Serum tau protein and S100B were detected by enzyme-linked immunosorbent assay kits. Correlations of serum tau protein and S100B were evaluated using the Pearson correlation analysis. RESULTS: (1) The incidence of neonatal HIE in the NAF-HIE group was 20 cases (26. 7%), I°AFC-HIE was 13 cases (17.3%), II°AFC-HIE was 10 cases (13.3%), and III°AFC-HIE was 32 cases (42. 7%). The incidence of moderate-to-severe HIE in the I°-III°AFC-HIE groups was 73.3% (55/75). (2) In 44 cases with severe HIE, 26 cases (59.1%) occurred in the III°AFC-HIE group, which had a significantly higher incidence of severe HIE than moderate HIE (p < 0.05). In NAF-HIE and I°AFC-HIE groups, the incidence of moderate HIE was 45.2% and 29.0%, respectively, which was higher than that of severe HIE (X2 = 9.2425, p < 0.05; X2 = 5.0472, p < 0.05, respectively). (3) Serum tau protein and S100B levels in the HIE groups were significantly higher than in the control group (all p < 0.05), and were significantly higher in the III°AFC-HIE group than in the NAF-HIE and I°AFC-HIE groups (all p < 0.05). (4) Serum tau protein and S100B levels in the severe HIE group were significantly higher in the moderate HIE group (all p < 0.05). (5) Serum tau protein and S100B levels were significantly positively correlated (r = 0.7703, p < 0.0001). CONCLUSION: Among children with severe HIE, the incidence of III°AFC was higher, and the levels of serum tau protein and S100B were increased. AFC level might be associated with HIE grading.


Brain Injuries , Hypoxia-Ischemia, Brain , Infant, Newborn , Child , Humans , Hypoxia-Ischemia, Brain/etiology , tau Proteins , Amniotic Fluid , Biomarkers , Brain
...